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First Quantization of Mass and Charge 
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The proper time is introduced as a parameter into the wave functions of relativis- 
tic quantum theory by first quantization of the mass. The classical limit is shown 
to be given by a recently developed canonical formulation of classical relativistic 
mechanics. The adjoint spinor is redefined with the help of a sign operator to 
remove a discrepancy between the classical and quantum actions in the behavior 
under time inversion. This results in positive energy densities for the Dirac theory. 
The inclusion of this sign operator into the definition of the probability current 
then removes negative probabilities from the theory. A five-dimensional formu- 
lation with first quantized charge is given. 

1. I N T R O D U C T I O N  

In classical relativistic mechanics the trajectory of a pointlike object is 
parameterized by the proper time of  this object. The proper time is invariant 
under transformations of  the Poincar6 group. This corresponds to the role 
that time plays in classical nonrelativistic mechanics, where trajectories are 
parameterized by the time and, apart  f rom translations, time is invariant 
under transformations of  the Galilean group. Now in nonrelativistic quan- 
tum mechanics time is retained as a parameter,  the time evolution of a single- 
particle wave function is described by the SchrSdinger equation, and classical 
nonrelativistic mechanics is obtained in the limit h--. 0. But there is no 
corresponding limit of  relativistic quantum theory, since neither the Dirac 
equation nor the Kle in-Gordon equation contains the proper time. Clearly, 
one might argue that the classical limit of  nonrelativistic quantum mechanics 
and the inverse procedure, first quantization, are based on the Hamiltonian 
formulation of classical mechanics, whereas the Dirac and Kle in-Gordon  
equations are covariant and no covariant Hamiltonian formulation of  class- 
ical relativistic mechanics exists. But recently we argued (Hannibal,  1991) 
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that a covariant Hamiltonian and canonical formalism indeed exist if one 
accepts that the existence is postulated independently from the existing 
Lagrangian formalism. We showed that the covariant classical action 

f d r  [p~(r)2~(r) - c2M(p(r), x(r))] (1) S =  

with a covariant "mass function" M(p, x) under free variation o fp ( r )  and 
x(r) yields the canonical equations 

2u = c2 c3M ~p, (2a) 

/~ = c20M (2b) 
Ox ~ 

which give the correct equations of motion if we postulate for a free particle 

M(p, x) = c-1 (Pu O" VPv)~/2 (3) 

with Minkowskian metric r/" V = diag(1, - 1, - 1, - 1) and 

M(p, x) = c-l[(pu - qAu(x))g uv(x)(pv- qA~(x))]l/2 (4) 

for a particle of charge q in external gravitational field g" ~ and electromag- 
netic field A~. We use the term "mass function" instead of "Hamiltonian" 
to distinguish it from the noncovariant energy function. In both cases the 
canonical equations (2) give the correct equations of motion for particles of 
any mass; due to (d/dr)M(p(r), x(r)) = 0 the rest mass becomes a constant 
of motion, and the parameter r is fixed by equation (2a) to be the proper 
time. We argued that the formalism cannot be equivalent to the well-known 
Lagrangian formulation, for two reasons: First, the action (1) with mass 
function given by (3) or (4) does not contain a constant with physical 
dimension of mass; thus, it is valid for particles of any mass, whereas the 
Lagrangian contains the rest mass as a constant. Second, the canonical 
equations fix the parametrization of the trajectories to be the proper time, 
whereas it is not fixed by the Euler-Lagrange equations. 

We now take this covariant canonical formulation of classical relativ- 
istic mechanics as a basis for a reanalysis of relativistic quantum mechanics. 
We ask: How does a relativistic quantum theory have to look in order to 
yield this theory as its classical limit? 

2. GENERALIZED EQUATIONS OF MOTION 

Obviously the wave functions of this new theory have to depend on the 
proper time z in order to give r-dependent expectation values (x '~( r )  of the 



First Quantization of Mass and Charge 1447 

coordinates for which then an analog to Ehrenfest's theorem should hold. 
Then the action and equations of motion should not contain the rest mass 
as a constan t, this should be a relativistic invariant conserved quantity. Both 
requirements are satisfied if the wave functions depend on r and in the 
action, Dirac, and Klein-Gordon equations the constant mass mo is replaced 
by the0perator --ilic-2~/~r. By this procedure of first quantization of the 
mass/~e obtain generalized covariant equations for free particles that are 

/ 
, (ih)'~'~ + ihc-lc3~)W(x, r) = 0 (5) 

instead of the Dirac (1928) equation and 

(c-2~ + r/uv~u ~v)~(x, r) =0 (6) 

instead of the Klein (1926b)-Gordon (1926) equation. We write W(x, r) for 
Dirac spinors (spin 1/2) and ~(x, r) for scalar wave functions (spin 0), and 
use ~ and ~b for r-independent functions. In both cases the separation ansatz 

F(x, r) = const �9 exp(ic2mov/h) �9 f ( x )  (7) 

gives back the original equations. This resembles the change from the time- 
dependent to the time-independent Schr6dinger equation. We now first 
analyze the classical limit of the generalized Dirac equation (5). The four- 
dimensional Fourier transform 

U?(p, r) = f d4x eiP"x"/~(x, r) 

obeys the equation 

~W(p, r ) =  (ic/li)7;p.Ud(p, r) 

which is solved, for given ~(p ,  %), by 

�9 (p, r) = exp[(ic/h) 7Upu(r - r0)]' ~(p ,  r0) 

Using the properties of the Dirac )'-matrices, we have 

exp( ic/h)'~'p~r) = [exp( i c r x ~ / h )  ](1 + )'~'pu/x/-pS) /2 

+ [exp(-icrx/~/h)](1 - ) '~pu/x/~)/2 

(8) 

(9) 

(10) 

(11) 

where we write x / ~  = x/P-~ 77 ~ vPv for short. This means that the operators 

P~ = (1 4- ) `~p~/x~) /2  (12) 

are projectors onto states with positive (P+) or negative (P_) mass, with 
mass m + (p) = + c - i x / ~  and r-evolution exp[ic2m ,~ (p) r/hi. The Dirac equa- 
tion therefore states that particles have positive mass too. Solutions of the 
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generalized equation in general do not have a definite mass; they will be 
linear combinations of arbitrary mass eigenstates. In a complete theory we 
hence need some generating mechanism that tells us which are the physically 
allowed masses. 

For particles with positive mass we have 

p_u?(p, r ) = ( 1 -  yUp~/x/-~)/2" tt'( p, r ) = 0  (13) 

Hence all components tt'. of the spinor ud satisfy the scalar equation 

O~tP,~(p, r) - (icx/~p-~/ti)tP,~(p, r) = 0 (14) 

This scalar equation in momentum representation does not Fourier trans- 
form to a differential equation for W~(x, r), but is a pseudo-differential 
equation (Reed and Simon, 1975). We nevertheless take it also as the equa- 
tion for scalar wave functions �9 because it is of first order in ~ and its 
solutions have positive mass, whereas the generalized Klein-Gordon equa- 
tion, which may be obtained as the square of (14), has solutions of both 
positive and negative mass. Moreover, we will later see that dimensional 
considerations favor this equation. 

The r-propagator G~(x, r) for the generalized Dirac equation (5), 
defined by 

tIJa(X, r ) =  ['d4x ' Ga~(x-x', r - r ' ) ~ ( x ' ,  r') (15) 
d 

is given by 

d4p fF -i(puxl'-crx/~)_] 
Ga~(x, r ) =  ~ exp _ j13+ J(2 ) I1 

The r-propagator G(x, r) for equation (14), defined by 

r r)  =~ d4x ' G(x-x' ,  r -  r '  ) ( I ) ( x  I , r I ) 

J 

is given by 

r d4p 
G(x, ~:) = j (~)4 exp 

- i (p,x  ~, - crx~ ~) 

(16) 

(17) 

(18) 

We see that for positive mass in both cases the phase factors of 
G(x-  x', r - r' ) are precisely given by the classical action (1) for a trajectory 
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with constant momentum p ( r ) - - p  and arbitrary path from x' at r' to x at 
r, divided by h. This indicates that these equations indeed have the desired 
classical limit; this completely parallels the nonrelativistic case. The intro- 
duction of the r-propagators eliminates the special role that time plays in 
the discussion of relativistic quantum physics. We consider this a step in the 
"reconciliation of quanta and relativity" desired by de Broglie (1939). 

3. E H R E N F E S T ' S  T H E O R E M  

We now look for the analog of Ehrenfest's (1927) theorem. The 
r-dependent expectation values of the coordinates are defined by 

for spinors, where ffd is the Pauli (1936) adjoint spinor, and 

for scalar wave functions. For any operator ~ we have 

(d/dr) f d4x @3~t'=(- ic/h) f d4x CI'[y~p~, 3]'~ (21) 

and 

Hence 

(d/dr) f d4xr f d4xr162 (22) 

d fd4x~lljli~ d - ~d4x(i)$(i)= 0 (23) 
dr  dr  ,J 

and we obtain in analogy to the nonrelativistic case 

d _ c 2 
d~ (•) - ~  ([M+, .~]) (24) 

In momentum representation we have ~u = (h/i) O/Op~ ; hence 

[7"Pv, 2 u] = ih~," (25) 

and 

[ x / ~ ,  2~] = i l i ~ ' ~ P v / V # ~  (26) 
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Since for positive mass 

we get in both cases 

q ' r " I '  = v 

Hannibal 

(27) 

d d 
d~ (xV)= rlS'V(Al+ 'p~)' dr (Pu)=0 (28) 

with self-adjoint positive-mass operators 

~I+ o = c-'  r~p~ P + = c- ' ~ P +  (29) 

= (30 )  

We have thus derived a relativistic Ehrenfest theorem. We also conclude 
that 

d (~ /+ )  =0 (31) 

Hence the mass is a conserved quantity, which is now a nontrivial statement. 
Thus, with respect to the equations of motion our relativistic quantum theory 
is consistent with the classical theory. 

4. ACTIONS AND SYMMETRIES 

But we have ignored a problem. Whereas S d4x ~*~P is always positive, 
d4x CpT is not necessarily, since we know from the solutions of the free 

Dirac equation with the Dirac representation of the 7-matrices (Bjorken and 
Drell, 1964) that for particle solutions with po > 0 the upper components of 
q~ dominate, and hence, ~ d4x CFT will be positive; and for antiparticle solu- 
tions with po < 0 the lower components dominate, and hence ~ d4x CIJ~I j will 
be negative due to the definition of the adjoint spinor (Pauli, 1936), 

= ~*TT/0 (32) 

Thus, for linear combinations of particle and antiparticle solutions 
I daxC-ptlJ may become zero. The basic reason for this may be seen to be a 
question of the symmetries of the quantum theory. In the classical theory 
there were two transformations that interchanged particle and antiparticle 
solutions, namely the inversion of either time or proper time. The time 
inversion is a coordinate transformation defined by 

x~'=T~vx v, p'~=pvT-JV~, T=diag(-1,  1, 1, 1) (33) 
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First we note that the standard time inversion of the Dirac theory (Bjorken 
and Drell, 1964), 

gt'( Tx) = i7173~*(x) (34) 

does not extend this transformation, since due to the additional complex 
conjugation, po is not changed. But then there is an extension of the classical 
time inversion to our theory, given by Pauli (1936): 

r r )=  ~(x, r) 

g/'(x', r)= 7~ r) (35) 

Under this transformation the equations of motion (5) and (14) are invari- 
ant, but ~ d4x q?T changes sign, S d4x r does not. This also applies to 
the actions. The action for scalar wave functions given by 

S(~)=?J?(2~h) -4 dr d4p@*(p, r)(ih~-ic\/~)~(p, r) (36) 
o 

(~ denotes the real part) yields equation (14) from the variational principle; 
it is invariant under the transformation (35). On the other hand, the action 
for spinors given by 

S(W) = ~  f ~ d r  f d4xCP(x, r)(iliar v) (37) 
o 

yields the generalized Dirac equation under variation, but is not invariant 
under this transformation. This seems to be the reason why the trans- 
formation (35) was not adopted for the standard theory. But as a con:se- 
quence there is no complex linear time inversion symmetry in this 
formulation of the Dirac theory. The symmetry properties of the classical 
and quantum actions as well as scalar and spinor actions are different. 

We note that both @ and W have the same physical dimension of 
(length) -2, whereas in standard Klein-Gordon theory the dimension of ~b 
involves the mass. This aspect of unification led us to choose the action (36) 
for spin-0 particles. We are consistent with standard theory without proper 
time if the modulus of constant in the separation ansatz (7) is chosen to be 
1/(At) w2, where Ar = r~-  r0 is the interval of r integration in the action; 
we then obtain r-independent actions. 

Now the essential point of this paper is that the discrepancy in the 
symmetry properties and other well-known problems in the interpretation 
of relativistic quantum theory may be removed by a redefinition of the 
adjoint spinor. At first it seems that there is no freedom left in the definition 
of the adjoint spinor. We have to require (Pauli, 1936) that @~P is a relativis- 
tic invariant real scalar density and @ = ud. Now there is a second definition 



1452 Hannibal 

that satisfies these requirements. We introduce the operator IV that in 
momentum representation is a real function defined by 

IV(p) = O(po) - O(-po) = Po (38) 
Ipor 

with step function 0. Now, Ivis a pseudo-differential operator identical with 
the Hilbert transform with respect to P0 (Friedrichs, 1970). IV changes the 
relative sign between particle and antiparticle solutions. It is invariant under 
transformations of the proper Lorentz group and the parity transformation, 
since these do not change the sign of the timelike component P0; this changes 
its sign only under time inversion and complex conjugation. We now define 
a new adjoint spinor by 

= ( IV~) ,%0 (39) 

Then ~ is an invariant real scalar density, ~ = tp, since ~/r2  = 1 (except for 
the unphysical point p0 = 0), and, moreover, it does not change sign under 
the time inversion (35). As a result the action 

S (~ )  : ~  f dr f d4x ffA(x, r)(ih~ + ihcTUOu)~P(x, r) (40) 

that yields the same equation of motion as S ( ~ )  is now invariant under a 
complex linear representation of the full Lorentz group and thus has the 
same invariance group of coordinate transformations as the classical action 
(1). Moreover, both S(~)  and S0t ')  are invariant under the r-inversion 
transformation ~ '  that extends the reparametrization transformation of the 
classical theory and is defined by 

(d~)(x, r)=~*(x,-r) 

(~4~t ' )(x,  r) = ir2~*(x ,  - r )  (41) 

It changes the sign of all momenta. But as a reparametrization does not 
change the physical situation, the observed quantities may not change. This 
will be proven in Section 6. But then we obviously have a contradiction to 
the standard theory (Bjorken and Drell, 1964), where (41) is the charge 
conjugation transformation. Since the transformation (41) changes the sign 
ofpo, it is clear that one of the actions S(u2) or S (~)  cannot be invariant 
under this transformation. Indeed it is S(~  ) which is not and we now prove 
this explicitly, since it is a major point of criticism regarding the standard 
theory. We look at the mass term m0ffd~ of the standard action. For the 
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transformed spinor we have 

( iy2qJ* )(  iy2W *) = tFr y2* r y~ y2W* = ~pr y~ y2 72~p* 

= _ WrTOW* = _ CpW 

since 72 is self-adjoint, 72*7"70= 7072, and 7 ~ 70 in any representation. 
Hence the action S(W) is not invariant under the standard charge conju- 
gation transformation. But if we instead employ the action S(W), we are in 
need of a charge conjugation transformation. For this purpose we give in 
Section 5 a five-dimensional formulation of relativistic quantum theory, since 
in the classical theory the behavior of charged particles is naturally studied 
in a five-dimensional formulation. Before we do this we note that the time 
inversion (35) commutes with the r-inversion (41) and the parity trans- 
formation can be made to commute with it if we choose 

x u, = p~,vx v, , ~ -  iv 
Pu = p v r  u, 

q"(x') = • iv~ 

P =  diag(1, -1 ,  -1 ,  - I )  

(42) 

Hence p2=_ 1 for spinors. Moreover, it is obvious that in our theory the 
transformation P T  is identical with the standard P C T  transformation, and 
hence the P C T  theorem (Pauli, 1955; Streater and Wightman, 1964) will 
hold in a corresponding field theory. 

5. FIVE-DIMENSIONAL QUANTUM THEORY 

The inclusion of gravitation and electromagnetism in a five-dimensional 
metric theory formulated by Kaluza (1921) and Klein (1926a) is extended 
to relativistic quantum theory by Klein (1926b) and Souriau (1963), where 
the four-dimensional theory is obtained as an approximation. The classical 
five-dimensional formulation given in Hannibal (1991) is a nonmetric theory, 
but equivalent to the four-dimensional one. We therefore now seek a formu- 
lation where the five-dimensional equations and actions exactly reduce to the 
four-dimensional equations for separating solutions. The five-dimensional 
space-time is assumed to be R 4 • s l ;  the fifth coordinate X 4 ranges from 0 
to 21r in units of h/e ,  which gives to the fifth momentum p4 directly the 
dimension of charge. The charge is first quantized by 

q ~/~4 = ih - 4 (43) ux 
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We use Latin indices a, b . . . .  , for the range from 0 to 4; Greek indices still 
run from 0 to 3. The replacement 

pu--*pu -p4Au(x) (44) 

is easily done for the generalized Dirac equation (5). We define five matrices 
Z a by 

z l  t = ~/,u Z 4= -- TUA~(x) (45) 

and write down the action as 

S ( ~ )  = ~  fdr fdSxffL(x, r)(ihC~+ihczaOa)UJ(x, r)  (46) 

This is one action for spin-l /2 particles of  any mass or charge, just as in the 
classical case. For  a state of  definite charge q = n �9 e the ansatz 

(e) �9 (x ~, r)= ~ eiqXV~'(x ~, r) (47) 

gives back the action (37). The quantization of charge into multiples of the 
elementary charge e is induced by the topology of the fifth dimension, since 
we require wave functions to be continuous. The action (46) is superficially 
five-covariant, but not truly, since the correct transformation properties of  
the z-matrices do not follow from those of  the ),-matrices; we still have to 
prescribe in a non-five-covariant way how the vector A~ transforms. In 
the classical theory (Hannibal, 1991), - A  ~ transforms a component of  the 
singular 5 x 5 matrix ~b  

gab=I_gUAW A~A~ 1 (48) 

and indeed we see that without gravitation we have 

ZaZ b + ZbZ ~ = 2~ ab (49) 

in extension of the relations for the y-matrices, but we do not see how the 
theory may be formulated covariantly with the help of  this matrix. In the 
spin-O case we could try to formulate an explicitly five-covariant action with 
a pseudo-differential mass operator M defined by 

(/9/(I))(x, v)=J "~-~'~e-'py/%-t[p~"b(x)pb]l/2~(p'(2Jr~Y v) (50) 
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where the integration over the fifth momentum reduces to a sum over the 
charge eigenfunctions. The corresponding action is given by 

S ( ~ ) = N  dr dSx~*(x, r)(ihO~+c22~(x, r) (51) 
0 

But this concept is not satisfying, since ~/ is  not self-adjoint and we do not 
have 2~/2 =~ab(X)~?a ~b in order that the solutions of the equation of motion 
satisfy the generalized Klein-Gordon equation (6) with the replacement (44) 
in the case of an electromagnetic potential with Lorentz gauge. Hence we 
restrict ourselves to spin 1/2. In this five-dimensional formulation based on 
the action (46) the charge conjugation becomes a coordinate transformation 
given by 

x ~'-- x", x 4'= 27rh/e-x 4 
pa'=pb(C-l)b~, C=diag(1, 1, 1, 1 ,-1)  

g~b(x,) = CacCb~CU(X) (52) 

' ( x ' )  = ' e ( x ) ,  ,~ ' (x ' )  = ~ ( x )  

The transformation of A, is induced by the transformation of gab For 
uncharged particles the transformation reduces to the identity. The trans- 
formation is complex linear and leaves the action (46) invariant. As a result 
the complete symmetry groups of the five-dimensional classical and quantum 
actions are identical. U(1) gauge transformations are induced by coordinate 
transformations x 4' =x  4 +f(x'), as can be seen from (47). But we note that 
this charge conjugation is not a symmetry realized in nature, since particles 
with opposite charge are not observed. The charge conjugation does not 
transform particles into antiparticles; this is achieved only by the time inver- 
sion of our theory. 

6. DENSITIES AND CURRENTS 

We now took at the currents that arise from the actions S(~) and S(q' ). 
In a laboratory a particle is observed irrespective of its proper time. Thus, in 
order to obtain observable currents we have to integrate over all contributing 
proper time. We also integrate over x 4 assuming that this coordinate is 
invisible as in the classical case (Hannibal, 1991). Hence the four-current 
that belongs to any momentum operator/~ (energy, momentum, charge) is 
given by 

J ~ " = ~ f d v f d x 4 q , * ~ Y ~  (53) 
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for spin 0, with velocity operators, 

~,~ = (c2/ i t~)[~/I ,  ~]  = r l ~ p ~  - '  (54) 

and 

(55) 

for spin 1/2 with velocity operators 

Y = C[ZaOa, .~] = cx" (56) 

Now we see that due to the definition of the adjoint spinor �9 the energy 
density J~ 0 is positive for all solutions of the generalized equations of motion; 
the operator I~ has changed the sign of the energy of antiparticle spinor 
solutions. On the other hand, the electric charge density Jp~ 4 now takes differ- 
ent signs for particle and antiparticle solutions for the same values of p4. 
This is the same for scalar and spinor functions in accordance with the 
classical five-dimensional theory, where we showed that the observable 
charge is p4 for particles and -p4 for antiparticles (Hannibal, 1991). This 
means that we have to choose one and the same sign ofp4 for all solutions 
of the wave equations. These form two equivalent sectors which can be seen 
from the r-inversion which changes the sign of p4 and hence interchanges 
these sectors; but it may be seen that the r-inversion leaves both currents 
(53) and (55) invariant for any operator that is odd in momentum represen- 
tation, hence especially the energy-momentum tensors J ; ,  are invariant. This 
means that we do not need Dirac's (1929, 1930) hole theory for antiparticles; 
these can be treated just like particles and energy conservation will prevent 
them from decaying into particles and photons. But what about the probabil- 
ity density? We see that the probability or particle density, if conventionally 
defined as J1 ~ becomes negative now also for antiparticle spinor solutions, 
just as it already was for scalar antiparticle solutions, which is the basic 
problem in the interpretation of the Klein-Gordon theory. Moreover, it is 
not invariant under the reparametrization transformation d as any physical 
quantity has to be. The reason for this is that the operator 1 is even. To 
solve this problem, we suggest that the probability current is defined to be 
Ja r  which is invariant since ~V is odd. The density J ~  is positive for all 
solutions of the equations (5) and (14), since it is the original density of the 
Dirac theory and the sign is changed for antiparticle solutions of the Klein- 
Gordon theory. If it may be normed to S d 3 x  j o  = 1, it may be interpreted 
as a probability density. We therefore look at the conservation properties of 
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the current Jw. For scalar wave functions of free particles we have 

The rhs of (57) is zero if r is an eigenfunction of the mass operator. In this 
case the probability current is conserved and we may interpret r as a single- 
particle state. Otherwise, for a linear combination of overlapping eigen- 
functions with different masses we get an oscillating part. For spinors we 
have 

0~S.,~ = - q' ~ r  I ~0' (58)  

which again yields the conservation of probability only if W is an eigenstate 
to the mass operator. This generalization is important in view of interactions 
that change mass or charge and particles are created or annihilated. If  we 
restrict our theory to free particles of definite mass, we see that we have 
constructed a relativistic invariant theory where the particle density and 
energy density are positive for all solutions of the equations of motion for 
spin 0 and spin 1/2. This explicitly disproves the statement given by Pauli 
(1940)-that due to relativistic invariance such a theory does not exist. But 
we note that the proof of the spin-statistics theorem (Pauli, 1940; Streater 
and Wightman, 1964) in the framework of a corresponding field theory will 
not be influenced by the introduction of the operator 1~ into the action. 

The boundary term arising in (58) and the fact that a term 

= j dx 4 ~4(1~x-//~4~/) (59) 0 

canceled in the calculation due to periodic boundary conditions suggest that 
we consider the five-dimensional v- and x4-dependent current 

J d ( r )  = ~ff,/~8~ug (60) 

since we then have the conservation property 

~r~'Tfl 1 ~  q- ~a Jl~a(r) = 0 (61) 

The trace of the energy-momentum five-tensor Jbo(r) is the mass density 
�9 ~r This feature, which generalizes the property that the energy-momen- 
tum tensor of the electromagnetic field is trace-free since photons are mass- 
less, was not present in the four-dimensional theory. Then if the energy- 
momentum five-tensor Jbo(r) acts as a source of the external fields, for 
nonoverlapping charge and mass eigenfunctions it does not depend on x 4 or 
v and the fields will be uncharged and massless. But if eigenfunctions with 
different charge or mass dependence overlap, the fields will be charged or 
massive. This shows that a five-dimensional theory of the fields with first 
quantized mass and charge a priori has to deal with charged and massive 
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interactions that are necessarily short-ranged since they exist only for over- 
lapping wave functions. Thus, at least the weak interaction should be 
included in any considerations for a unified theory in extension of the ideas 
of Kaluza and Klein. A new ansatz for such a theory will be presented 
elsewhere. 

7. CONCLUSION 

We conclude that the introduction of the proper time and a fifth coordi- 
nate into the wave functions together with the first quantization of mass and 
charge, and the inclusion of the sign operator I~ into the definition of the 
adjoint spinor and the probability current, have interesting consequences for 
relativistic quantum theory. First of all the theory is in every respect consist- 
ent with the classical theory; the equations of motion are related by the 
Ehrenfest theorem and all actions have the same symmetry group, including 
a complex linear representation of the full Lorentz group for the quantum 
actions. Then the two basic problems in the interpretation of relativistic 
quantum theory, the negative probability density of the Klein-Gordon 
theory and the negative energy states of the Dirac theory, are removed; the 
energy and probability densities for the solutions of the generalized equa- 
tions are always positive. These features are retained if one specializes the 
wave functions to be eigenfunctions of the mass and charge operators, in 
which case we obtained the original equations of motion. Thus, particles 
and antiparticles may be treated in the same way as different solutions of 
some wave equation, in the absence of interactions we have a consistent 
single-particle interpretation. 
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